Matching and Grokking: Approaches to Personalized Crowdsourcing

نویسندگان

  • Peter Organisciak
  • Jaime Teevan
  • Susan T. Dumais
  • Rob Miller
  • Adam Tauman Kalai
چکیده

Personalization aims to tailor content to a person’s individual tastes. As a result, the tasks that benefit from personalization are inherently subjective. Many of the most robust approaches to personalization rely on large sets of other people’s preferences. However, existing preference data is not always available. In these cases, we propose leveraging online crowds to provide on-demand personalization. We introduce and evaluate two methods for personalized crowdsourcing: taste-matching for finding crowd workers who are similar to the requester, and taste-grokking, where crowd workers explicitly predict the requester’s tastes. Both approaches show improvement over a non-personalized baseline, with taste-grokking performing well in simpler tasks and taste-matching performing well with larger crowds and tasks with latent decision-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Crowd of Your Own: Crowdsourcing for On-Demand Personalization

Personalization is a way for computers to support people’s diverse interests and needs by providing content tailored to the individual. While strides have been made in algorithmic approaches to personalization, most require access to a significant amount of data. However, even when data is limited online crowds can be used to infer an individual’s personal preferences. Aided by the diversity of...

متن کامل

Personalized Classifier Ensemble Pruning Framework for Mobile Crowdsourcing

Ensemble learning has been widely employed by mobile applications, ranging from environmental sensing to activity recognitions. One of the fundamental issue in ensemble learning is the trade-off between classification accuracy and computational costs, which is the goal of ensemble pruning. During crowdsourcing, the centralized aggregator releases ensemble learning models to a large number of mo...

متن کامل

Toward Hands-Off Crowdsourcing: Crowdsourced Entity Matching for the Masses

Recent approaches to crowdsourcing entity matching (EM) are limited in that they crowdsource only parts of the EM workflow, requiring a developer to execute the remaining parts. Consequently, these approaches do not scale to the growing EM need at enterprises and crowdsourcing startups, and cannot handle scenarios where ordinary users (i.e., the masses) want to leverage crowdsourcing to match e...

متن کامل

Crowdsourced Evaluation of Personalization and Diversi- fication Techniques in Web Search

Crowdsourcing services have been proven to be a valuable resource for search system evaluation or creation of test collections. However, there are still no clear protocols to perform a usercentered evaluation of approaches that consider user factors, such as personalization or diversification of results. In this work we present two complementary evaluation methodologies to evaluate personalizat...

متن کامل

Reducing Uncertainty of Schema Matching via Crowdsourcing

Schema matching is a central challenge for data integration systems. Automated tools are often uncertain about schema matchings they suggest, and this uncertainty is inherent since it arises from the inability of the schema to fully capture the semantics of the represented data. Human common sense can often help. Inspired by the popularity and the success of easily accessible crowdsourcing plat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015